Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 541
Filtrar
1.
Int J Biol Macromol ; 263(Pt 1): 130276, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38373566

RESUMO

α-Galactosyl ceramide (GalCer) as a glycolipid has been long used as a standard reference for positive control in natural killer T cell studies. The (1,2)-disaccharide analogue of GalCer attracts a special attention in the study of lysosomal glycolipid processing. This paper describes the synthesis and self-assembly behaviors of GalCer 1,2-polysaccharide analogue (PolyGalCer), having considered the 1,2-disaccharide analogue as a structural motif. The synthesis of PolyGalCer is performed via one-pot glycosidation technique of 1,2-linked oligogalactan exploiting chain polymerization of galactose-based cyclic sulfite as a monomer initiated with ceramide-based alcoholic aglycon. Through the concentration dependence of PolyGalCer solutions in water or in MeOH on the turbidity, it is found that PolyGalCer forms associates in both media. From the intersection points, the critical aggregation concentration (CAC) values of PolyGalCer in water and MeOH were estimated. To know the self-assembly and the thermal transition behaviors, we performed dynamic light scattering (DLS) analysis of the associates comprising PolyGalCer in water. The transmission electron microscopy observations of the aqueous sample solution indicate that the solution of PolyGalCer includes large spherical associates. The results clarify that the 1,2-galactan moiety of PolyGalCer skeleton contributes on the kinetic inhibition of large associate formation and the metamorphosis of associates.


Assuntos
Galactosilceramidas , Polissacarídeos , Galactosilceramidas/química , Galactosilceramidas/farmacologia , Dissacarídeos , Água
2.
Angew Chem Int Ed Engl ; 63(1): e202310983, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-37857582

RESUMO

The development of potent adjuvants is an important step for improving the performance of subunit vaccines. CD1d agonists, such as the prototypical α-galactosyl ceramide (α-GalCer), are of special interest due to their ability to activate iNKT cells and trigger rapid dendritic cell maturation and B-cell activation. Herein, we introduce a novel derivatization hotspot at the α-GalCer skeleton, namely the N-substituent at the amide bond. The multicomponent diversification of this previously unexplored glycolipid chemotype space permitted the introduction of a variety of extra functionalities that can either potentiate the adjuvant properties or serve as handles for further conjugation to antigens toward the development of self-adjuvanting vaccines. This strategy led to the discovery of compounds eliciting enhanced antigen-specific T cell stimulation and a higher antibody response when delivered by either the parenteral or the mucosal route, as compared to a known potent CD1d agonist. Notably, various functionalized α-GalCer analogues showed a more potent adjuvant effect after intranasal immunization than a PEGylated α-GalCer analogue previously optimized for this purpose. Ultimately, this work could open multiple avenues of opportunity for the use of mucosal vaccines against microbial infections.


Assuntos
Células T Matadoras Naturais , Vacinas , Adjuvantes Imunológicos/farmacologia , Galactosilceramidas/farmacologia , Galactosilceramidas/química
3.
Methods Mol Biol ; 2613: 1-11, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36587066

RESUMO

Certain glycolipids have immunomodulatory potential by activating natural killer T (NKT) cells, a unique T cell subset. Invariant NKT (iNKT) cells recognize α-galactosylceramide (α-GalCer) and synthetic derivatives presented by CD1d molecules and secrete large amounts of cytokines that modulate immune functions. Some iNKT cell ligands induce distinct reactions biased toward either Th1 or Th2 immune responses, while others show mixed responses. We describe the methods for activating iNKT cells by the ligands as represented by α-GalCer using in vitro assays, such as cell-free or co-culture with antigen-presenting cells. In addition, α-GalCer/CD1d multimer can be used to specifically detect iNKT cells using flow cytometry. α-GalCer is also utilized to activate systemic iNKT cells in vivo, which leads to the production of high levels of cytokines in sera. Collectively, α-GalCer and its derivatives activate iNKT cells that modulate immune balance, and we need to understand the characteristics of these ligands for developing their utility.


Assuntos
Galactosilceramidas , Células T Matadoras Naturais , Galactosilceramidas/farmacologia , Citocinas , Antígenos CD1d , Imunidade
4.
J Control Release ; 353: 134-146, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36372387

RESUMO

Oral vaccination has in the recent years gained a lot of attraction, mainly due to optimized patient compliance and logistics. However, the development of oral vaccines, especially oral subunit vaccines is challenging. Micro technology can be utilized to overcome some of these challenges, by facilitating protection and effective delivery of the vaccine components in the gastrointestinal tract (GI tract). One such technology is Microcontainers (MCs), which can be realized to be mucoadhesive and to target specific regions of the GI tract via oral delivery. Here, we test MCs, for oral delivery of the C. trachomatis vaccine candidate CTH522, in combination with effective mucosal adjuvants. The adjuvants alpha- galactosylceramide (α-GalCer), C-di-GMP and cholera toxin B were compared in vivo, to identify the most prominent adjuvant for formulation with CTH522. Formulations were administered both purely oral and as boosters following a subcutaneous (s.c.) prime with CTH522 in combination with the CAF®01 adjuvant. CTH522 formulated with α-GalCer showed to be the most efficient combination for the oral vaccine, based on the immunological analysis. Lyophilized formulation of CTH522 and α-GalCer was loaded into MCs and these were subsequently coated with Eudragit L100-55 and evaluated in vivo in mice for the ability of MCs to mediate intestinal vaccine delivery and increase immunogenicity of the vaccine. Mice receiving oral prime and boosters did show a significantly enhanced mucosal immune responses compared to naive mice. This indicates the MCs are indeed capable of delivering the vaccine formulation intact and able to stimulate the immune cells. Mice orally boosted with MCs following a s.c. prime with CAF01, demonstrated improved systemic and local Th17 responses, along with increased local IFN-γ and IgA levels compared to both the s.c. prime alone and the homologous oral prime-boost immunization. However, due to the relatively weak observed effect of the MC delivery on the immune responses, it was hypothesized that the MCs are proportionally too large for the GI tract of mice, and thus cleared before an effective immune response can be induced. To investigate this, MCs were loaded with BaSO4, and orally administered to mice. Analysis with X-ray and CT showed a transit time of approximately 1-1.5 h from the stomach to the cecum, corresponding to the standard transit time in mice, and an extremely narrow absorption window. This indicates that mice is not a suitable animal model for evaluation of MCs. These data should be taken into consideration in future in vivo trials with this and similar technologies, where larger animals might be a necessity for proof-of-concept studies.


Assuntos
Galactosilceramidas , Imunidade nas Mucosas , Animais , Camundongos , Galactosilceramidas/farmacologia , Vacinação , Adjuvantes Imunológicos , Adjuvantes Farmacêuticos/farmacologia , Chlamydia trachomatis , Vacinas de Subunidades Antigênicas , Camundongos Endogâmicos BALB C
5.
Cancer Res ; 83(4): 582-594, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36512635

RESUMO

CD1d-restricted invariant natural killer T (iNKT) cells actively patrol the liver and possess valuable antitumor potential. However, clinical trials evaluating administration of iNKT cell-specific agonist α-galactosylceramide (α-GalCer) have failed to achieve obvious tumor regression. Improving the efficacy of iNKT cell-based immunotherapy requires a better understanding of the factors restraining the clinical benefits. In the context of hepatitis B virus (HBV)-related hepatocellular carcinoma (HCC), we found circulating and hepatic iNKT cells were hyperactivated but demonstrated imbalances in ratio and defective α-GalCer responsiveness. Exogenous IL2 helped to expand residual α-GalCer-responsive clones with reduced T-cell receptor diversity. However, transcriptome-wide analysis revealed activation of the senescence-associated secretory phenotype and dampened cytotoxicity in iNKT cells, weakening their immune surveillance capacity. The senescent status of iNKT cells from the patients was further illustrated by cell-cycle arrest, impaired telomere maintenance, perturbed calcium transport-related biological processes, and altered metabolism. Lipidomic profiling revealed the accumulation of long-chain acylcarnitines (LCAC) and aberrant lipid metabolism in HCC tissue. Exogenous LCACs, especially palmitoyl-carnitine and stearoyl-carnitine, inhibited iNKT cell expansion and promoted senescence. Collectively, our results provide deeper insights into iNKT cell dysregulation and identify a cell senescence-associated challenge for iNKT cell-based immunotherapy in HBV-related HCC. The mechanistic links between iNKT cell senescence and accumulated LCACs suggest new targets for anti-HCC immunotherapies. SIGNIFICANCE: Patients with HBV-related HCC exhibit a cell senescence-associated dysregulation of invariant natural killer cells that is related to altered lipid metabolism and accumulated LCACs in tumor tissue.


Assuntos
Carcinoma Hepatocelular , Carnitina , Neoplasias Hepáticas , Células T Matadoras Naturais , Humanos , Antígenos CD1d , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Carnitina/análogos & derivados , Carnitina/farmacologia , Galactosilceramidas/farmacologia , Neoplasias Hepáticas/metabolismo , Células T Matadoras Naturais/efeitos dos fármacos , Células T Matadoras Naturais/metabolismo , Senescência Celular/efeitos dos fármacos
6.
Int J Mol Sci ; 23(14)2022 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-35886891

RESUMO

Invariant natural killer T (iNKT) cells have the capacity to mount potent anti-tumor reactivity and have therefore become a focus in the development of cell-based immunotherapy. iNKT cells attack tumor cells using multiple mechanisms with a high efficacy; however, their clinical application has been limited because of their low numbers in cancer patients and difficulties in infiltrating solid tumors. In this study, we aimed to overcome these critical limitations by using α-GalCer, a synthetic glycolipid ligand specifically activating iNKT cells, to recruit iNKT to solid tumors. By adoptively transferring human iNKT cells into tumor-bearing humanized NSG mice and administering a single dose of tumor-localized α-GalCer, we demonstrated the rapid recruitment of human iNKT cells into solid tumors in as little as one day and a significantly enhanced tumor killing ability. Using firefly luciferase-labeled iNKT cells, we monitored the tissue biodistribution and pharmacokinetics/pharmacodynamics (PK/PD) of human iNKT cells in tumor-bearing NSG mice. Collectively, these preclinical studies demonstrate the promise of an αGC-driven iNKT cell-based immunotherapy to target solid tumors with higher efficacy and precision.


Assuntos
Células T Matadoras Naturais , Neoplasias , Animais , Antígenos CD1d , Galactosilceramidas/farmacologia , Humanos , Camundongos , Neoplasias/terapia , Distribuição Tecidual
7.
Biomed Pharmacother ; 149: 112808, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35290889

RESUMO

Krabbe disease is a rare, inherited neurodegenerative disease due to impaired lysosomal ß-galactosylceramidase (GALC) activity and formation of neurotoxic ß-galactosylsphingosine ('psychosine'). We investigated substrate reduction therapy with a novel brain-penetrant inhibitor of galactosylceramide biosynthesis, RA 5557, in twitcher mice that lack GALC activity and model Krabbe disease. This thienopyridine derivative selectively inhibits uridine diphosphate-galactose glycosyltransferase 8 (UGT8), the final step in the generation of galactosylceramides which are precursors of sulphatide and, in the pathological lysosome, the immediate source of psychosine. Administration of RA 5557, reduced pathologically elevated psychosine concentrations (72-86%) in the midbrain and cerebral cortex in twitcher mice: the inhibitor decreased galactosylceramides by about 70% in midbrain and cerebral cortex in mutant and wild type animals. Exposure to the inhibitor significantly decreased several characteristic inflammatory response markers without causing apparent toxicity to myelin-producing cells in wild type and mutant mice; transcript abundance of oligodendrocyte markers MBP (myelin basic protein) and murine UGT8 was unchanged. Administration of the inhibitor before conception and during several breeding cycles to mice did not impair fertility and gave rise to healthy offspring. Nevertheless, given the unchanged lifespan, it appears that GALC has critical functions in the nervous system beyond the hydrolysis of galactosylceramide and galactosylsphingosine. Our findings support further therapeutic exploration of orally active UGT8 inhibitors in Krabbe disease and related galactosphingolipid disorders. The potent thienopyridine derivative with effective target engagement here studied appears to have an acceptable safety profile in vivo; judicious dose optimization will be needed to ensure efficacious clinical translation.


Assuntos
Leucodistrofia de Células Globoides , Doenças Neurodegenerativas , Animais , Encéfalo/metabolismo , Modelos Animais de Doenças , Galactosilceramidas/metabolismo , Galactosilceramidas/farmacologia , Leucodistrofia de Células Globoides/tratamento farmacológico , Leucodistrofia de Células Globoides/metabolismo , Leucodistrofia de Células Globoides/patologia , Camundongos , Doenças Neurodegenerativas/patologia , Psicosina/metabolismo , Tienopiridinas
8.
Mediators Inflamm ; 2021: 5170123, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34924812

RESUMO

Herein, the migration distribution and safety of specific phenotypic and functionally identified spleen-derived invariant natural killer T2 (iNKT2) cells after adoptive infusion in mice were studied. The proliferation and differentiation of iNKT cells were induced by intraperitoneal injection of α-galactosylceramide (α-GalCer) in vivo. Mouse spleens were isolated in a sterile environment. iNKT cells were isolated by magnetic-activated cell sorting columns (MS columns). Cytometric bead array (CBA) assay was used to detect cytokine secretion in the supernatant stimulated by iNKT cells. The basic life status of the mice was observed, and systematic quantitative scoring was conducted after injecting spleen-derived iNKT cells through the tail vein. An in vivo imaging system was used to trace the migration and distribution of iNKT cells in DBA mice. The percentage of the iNKT2 subgroup was the highest in 3 days after intraperitoneal injection of α-GalCer, and iNKT2 subsets accounted for more than 92% after separation and purification by magnetic-activated cell sorting (MACS). Anti-inflammatory cytokine IL-4 was mainly found in the supernatant of cell cultures. The adoptive infusion of iNKT cells into healthy mice resulted in no significant change in the basic life status of mice compared with the noninjected group. iNKT cells were detected in the lung, spleen, and liver, but no fluorescence was detected in lymph nodes and thymus. After dissecting the mice, it was found that there were no significant abnormalities in the relevant immune organs, brain, heart, kidney, lung, and other organs. Intraperitoneal injection of α-GalCer results in a large number of iNKT2 cells, mainly secreting anti-inflammatory cytokine IL-4, from the spleen of mice. After adoptive infusion, the iNKT2 cells mainly settled in the liver and spleen of mice with a satisfactory safety profile.


Assuntos
Transferência Adotiva , Células T Matadoras Naturais/imunologia , Baço/imunologia , Animais , Movimento Celular , Galactosilceramidas/farmacologia , Imunofenotipagem , Masculino , Camundongos , Camundongos Endogâmicos DBA , Células T Matadoras Naturais/fisiologia
9.
Int J Mol Sci ; 22(22)2021 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-34830332

RESUMO

The infiltration and activation of macrophages as well as lymphocytes within atherosclerotic lesion contribute to the pathogenesis of plaque rupture. We have demonstrated that invariant natural killer T (iNKT) cells, a unique subset of T lymphocytes that recognize glycolipid antigens, play a crucial role in atherogenesis. However, it remained unclear whether iNKT cells are also involved in plaque instability. Apolipoprotein E (apoE) knockout mice were fed a standard diet (SD) or a high-fat diet (HFD) for 8 weeks. Moreover, the SD- and the HFD-fed mice were divided into two groups according to the intraperitoneal injection of α-galactosylceramide (αGC) that specifically activates iNKT cells or phosphate-buffered saline alone (PBS). ApoE/Jα18 double knockout mice, which lack iNKT cells, were also fed an SD or HFD. Plaque instability was assessed at the brachiocephalic artery by the histological analysis. In the HFD group, αGC significantly enhanced iNKT cell infiltration and exacerbated atherosclerotic plaque instability, whereas the depletion of iNKT cells attenuated plaque instability compared to PBS-treated mice. Real-time PCR analyses in the aortic tissues showed that αGC administration significantly increased expressional levels of inflammatory genes such as IFN-γ and MMP-2, while the depletion of iNKT cells attenuated these expression levels compared to those in the PBS-treated mice. Our findings suggested that iNKT cells are involved in the exacerbation of plaque instability via the activation of inflammatory cells and upregulation of MMP-2 in the vascular tissues.


Assuntos
Aterosclerose/imunologia , Interferon gama/imunologia , Células Matadoras Naturais/imunologia , Macrófagos/imunologia , Metaloproteinase 2 da Matriz/imunologia , Placa Aterosclerótica/imunologia , Animais , Aterosclerose/etiologia , Aterosclerose/genética , Aterosclerose/patologia , Artéria Braquial/imunologia , Artéria Braquial/patologia , Movimento Celular/efeitos dos fármacos , Dieta Hiperlipídica/efeitos adversos , Galactosilceramidas/farmacologia , Regulação da Expressão Gênica , Interferon gama/genética , Células Matadoras Naturais/efeitos dos fármacos , Células Matadoras Naturais/patologia , Ativação Linfocitária , Macrófagos/efeitos dos fármacos , Macrófagos/patologia , Masculino , Metaloproteinase 2 da Matriz/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout para ApoE , Placa Aterosclerótica/etiologia , Placa Aterosclerótica/genética , Placa Aterosclerótica/patologia
10.
Front Immunol ; 12: 754106, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34691073

RESUMO

Macrophage polarization is critical for liver tissue repair following acute liver injury. However, the underlying mechanisms of macrophage phenotype switching are not well defined. Invariant natural killer T (iNKT) cells orchestrate tissue inflammation and tissue repair by regulating cytokine production. Herein, we examined whether iNKT cells played an important role in liver repair after hepatic ischemia-reperfusion (I/R) injury by affecting macrophage polarization. To this end, we subjected male C57BL/6 mice to hepatic I/R injury, and mice received an intraperitoneal (ip) injection of α-galactosylceramide (α-GalCer) or vehicle. Compared with that of the vehicle, α-GalCer administration resulted in the promotion of liver repair accompanied by acceleration of macrophage differentiation and by increases in the numbers of Ly6Chigh pro-inflammatory macrophages and Ly6Clow reparative macrophages. iNKT cells activated with α-GalCer produced interleukin (IL)-4 and interferon (IFN)-γ. Treatment with anti-IL-4 antibodies delayed liver repair, which was associated with an increased number of Ly6Chigh macrophages and a decreased number of Ly6Clow macrophages. Treatment with anti-IFN-γ antibodies promoted liver repair, associated with reduced the number of Ly6Chigh macrophages, but did not change the number of Ly6Clow macrophages. Bone marrow-derived macrophages up-regulated the expression of genes related to both a pro-inflammatory and a reparative phenotype when co-cultured with activated iNKT cells. Anti-IL-4 antibodies increased the levels of pro-inflammatory macrophage-related genes and decreased those of reparative macrophage-related genes in cultured macrophages, while anti-IFN-γ antibodies reversed the polarization of macrophages. Cd1d-deficient mice showed delayed liver repair and suppressed macrophage switching, compared with that in wild-type mice. These results suggest that the activation of iNKT cells by α-GalCer facilitated liver repair after hepatic I/R injury by both IL-4-and IFN-γ-mediated acceleration of macrophage polarization. Therefore, the activation of iNKT cells may represent a therapeutic tool for liver repair after hepatic I/R injury.


Assuntos
Galactosilceramidas/farmacologia , Regeneração Hepática/fisiologia , Fígado/imunologia , Ativação de Macrófagos , Células T Matadoras Naturais/imunologia , Animais , Antígenos CD1d/genética , Antígenos CD1d/imunologia , Células Cultivadas , Técnicas de Cocultura , Interferon gama/antagonistas & inibidores , Interferon gama/biossíntese , Interleucina-4/antagonistas & inibidores , Interleucina-4/biossíntese , Fígado/irrigação sanguínea , Regeneração Hepática/imunologia , Ativação Linfocitária/efeitos dos fármacos , Macrófagos/classificação , Macrófagos/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células T Matadoras Naturais/efeitos dos fármacos , Células T Matadoras Naturais/metabolismo , Traumatismo por Reperfusão
11.
J Med Chem ; 64(15): 11554-11569, 2021 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-34279930

RESUMO

The development of a safe and effective COVID-19 vaccine is of paramount importance to terminate the current pandemic. An adjuvant is crucial for improving the efficacy of the subunit COVID19 vaccine. α-Galactosylceramide (αGC) is a classical iNKT cell agonist which causes the rapid production of Th1- and Th2-associated cytokines; we, therefore, expect that the Th1- or Th2-skewing analogues of αGC can better enhance the immunogenicity of the receptor-binding domain in the spike protein of SARS-CoV-2 fused with the Fc region of human IgG (RBD-Fc). Herein, we developed a universal synthetic route to the Th1-biasing (α-C-GC) and Th2-biasing (OCH and C20:2) analogues. Immunization of mice demonstrated that αGC-adjuvanted RBD-Fc elicited a more potent humoral response than that observed with Alum and enabled the sparing of antigens. Remarkably, at a low dose of the RBD-Fc protein (2 µg), the Th2-biasing agonist C20:2 induced a significantly higher titer of the neutralizing antibody than that of Alum.


Assuntos
Adjuvantes Imunológicos , Anticorpos Neutralizantes/imunologia , Vacinas contra COVID-19/imunologia , Galactosilceramidas/farmacologia , Células T Matadoras Naturais/efeitos dos fármacos , Animais , Feminino , Células HEK293 , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Células T Matadoras Naturais/imunologia , Células Th2
12.
Inflammation ; 44(5): 1982-1992, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34021838

RESUMO

Although natural killer T cells (NKT cells) are altered in obese asthmatic mice, their function remains completely unclear. To further explore the potential mechanism of NKT cells in airway inflammation of obesity-associated asthma, we examined the effects of α-galactosylceramide (KRN7000) on airway inflammation in obese asthmatic mice. Male C57BL/6J mice were divided into five groups: (1) control; (2) asthma; (3) A + KRN, asthma with KRN7000; (4) obese asthma; and (5) OA + KRN, obese asthma with KRN7000. Cytometric bead array (CBA) was used to detect interleukin-4 (IL-4), IL-10, tumor necrosis factor-α (TNF-α), and interferon-γ (IFN-γ) in the serum. Flow cytometry was used to detect NKT cells and CD69+ NKT cells. Airway inflammation was observed in pathological sections, and calmodulin (CaM) expression was observed by immunohistochemistry in lung tissues. Airway inflammation in the obese asthma group was more severe than that of the asthma group. Airway inflammation of the OA + KRN group was reduced more than that of the A + KRN group. CD69+ NKT cells were only significantly reduced in the OA + KRN group. The levels of serum IFN-γ and TNF-α increased more in the OA + KRN group than in the A + KRN group. CaM is widely expressed in the cytoplasm of the lung tissues and was sharply decreased in the OA + KRN group. KRN7000 can significantly reduce airway inflammation in obesity-associated asthma by regulating NKT cell cytokine secretion and intracellular calcium. These results may contribute to the development of novel therapeutic approaches.


Assuntos
Adjuvantes Imunológicos/uso terapêutico , Asma/metabolismo , Galactosilceramidas/uso terapêutico , Mediadores da Inflamação/metabolismo , Células Matadoras Naturais/metabolismo , Obesidade/metabolismo , Adjuvantes Imunológicos/farmacologia , Animais , Asma/induzido quimicamente , Asma/tratamento farmacológico , Dieta Hiperlipídica/efeitos adversos , Galactosilceramidas/farmacologia , Mediadores da Inflamação/antagonistas & inibidores , Células Matadoras Naturais/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/tratamento farmacológico , Ovalbumina/toxicidade
13.
Int J Mol Sci ; 22(8)2021 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-33920301

RESUMO

Chronic infections are considered one of the most severe problems in skin wounds, and bacteria are present in over 90% of chronic wounds. Pseudomonas aeruginosa is frequently isolated from chronic wounds and is thought to be a cause of delayed wound healing. Invariant natural killer T (iNKT) cells, unique lymphocytes with a potent regulatory ability in various inflammatory responses, accelerate the wound healing process. In the present study, we investigated the contribution of iNKT cells in the host defense against P. aeruginosa inoculation at the wound sites. We analyzed the re-epithelialization, bacterial load, accumulation of leukocytes, and production of cytokines and antimicrobial peptides. In iNKT cell-deficient (Jα18KO) mice, re-epithelialization was significantly decreased, and the number of live colonies was significantly increased, when compared with those in wild-type (WT) mice on day 7. IL-17A, and IL-22 production was significantly lower in Jα18KO mice than in WT mice on day 5. Furthermore, the administration of α-galactosylceramide (α-GalCer), a specific activator of iNKT cells, led to enhanced host protection, as shown by reduced bacterial load, and to increased production of IL-22, IL-23, and S100A9 compared that of with WT mice. These results suggest that iNKT cells promote P. aeruginosa clearance during skin wound healing.


Assuntos
Células T Matadoras Naturais/imunologia , Reepitelização/genética , Pele/imunologia , Cicatrização/genética , Animais , Calgranulina B/genética , Galactosilceramidas/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Interferon gama/genética , Interleucina-17/genética , Interleucina-23/genética , Interleucinas/genética , Leucócitos/imunologia , Leucócitos/microbiologia , Camundongos , Proteínas Citotóxicas Formadoras de Poros/farmacologia , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/patogenicidade , Reepitelização/imunologia , Pele/microbiologia , Pele/patologia , Cicatrização/imunologia , Interleucina 22
14.
J Med Chem ; 64(4): 1951-1965, 2021 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-33539088

RESUMO

GM3, a typical tumor-associated carbohydrate antigen, is considered as an important target for cancer vaccine development, but its low immunogenicity limits its application. αGalCer, an iNKT cell agonist, has been employed as an adjuvant via a unique immune mode. Herein, we prepared and investigated two types of antitumor vaccine candidates: (a) self-adjuvanting vaccine GM3-αGalCer by conjugating GM3 with αGalCer and (b) noncovalent vaccine GM3-lipid/αGalCer, in which GM3 is linked with lipid anchor and coassembled with αGalCer. This demonstrated that ßGalCer is an exceptionally optimized lipid anchor, which enables the noncovalent vaccine candidate GM3-ßGalCer/αGalCer to evoke a comparable antibody level to GM3-αGalCer. However, the antibodies induced by GM3-αGalCer are better at recognition B16F10 cancer cells and more effectively activate the complement system. Our study highlights the importance of vaccine constructs utilizing covalent or noncovalent assembly between αGalCer with carbohydrate antigens and choosing an appropriate lipid anchor for use in noncovalent vaccine formulation.


Assuntos
Adjuvantes Imunológicos/farmacologia , Vacinas Anticâncer/farmacologia , Gangliosídeo G(M3)/farmacologia , Galactosilceramidas/farmacologia , Adjuvantes Imunológicos/síntese química , Animais , Vacinas Anticâncer/síntese química , Vacinas Anticâncer/imunologia , Sequência de Carboidratos , Feminino , Gangliosídeo G(M3)/análogos & derivados , Gangliosídeo G(M3)/imunologia , Galactosilceramidas/síntese química , Galactosilceramidas/imunologia , Humanos , Imunidade Humoral/efeitos dos fármacos , Imunoglobulina G/imunologia , Lipossomos/química , Camundongos Endogâmicos BALB C , Células T Matadoras Naturais/imunologia , Células THP-1
15.
Int J Nanomedicine ; 16: 403-420, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33469292

RESUMO

BACKGROUND: Therapeutic tumor vaccines are one of the most promising strategies and have attracted great attention in cancer treatment. However, most of them have shown unsatisfactory immunogenicity, there are still few available vaccines for clinical use. Therefore, there is an urgent demand to develop novel strategies to improve the immune efficacy of antitumor vaccines. PURPOSE: This study aimed to develop novel adjuvants and carriers to enhance the immune effect of MUC1 glycopeptide antigen-based antitumor vaccines. METHODS: An antitumor vaccine was developed, in which MUC1 glycopeptide was used as tumor-associated antigen, α-GalCer served as an immune adjuvant and AuNPs was a multivalent carrier. RESULTS: Immunological evaluation results indicated that the constructed vaccines enabled a significant antibody response. FACS analysis and immunofluorescence assay showed that the induced antisera exhibited a specific binding with MUC1 positive MCF-7 cells. Moreover, the induced antibody can mediate CDC to kill MCF-7 cells. Besides stimulating B cells to produce MUC1-specific antibodies, the prepared vaccines also induced MUC1-specific CTLs in vitro. Furthermore, the vaccines significantly delayed tumor development in tumor-bearing mice model. CONCLUSION: These results showed that the construction of vaccines by presenting α-GalCer adjuvant and an antigen on gold nanoparticles offers a potential strategy to improve the antitumor response in cancer immunotherapy.


Assuntos
Adjuvantes Imunológicos/farmacologia , Antígenos de Neoplasias/imunologia , Vacinas Anticâncer/imunologia , Galactosilceramidas/farmacologia , Ouro/farmacologia , Nanopartículas Metálicas/química , Mucina-1/imunologia , Adjuvantes Imunológicos/administração & dosagem , Animais , Anticorpos Antineoplásicos/imunologia , Células da Medula Óssea/efeitos dos fármacos , Células da Medula Óssea/metabolismo , Linhagem Celular Tumoral , Citocinas/metabolismo , Citotoxicidade Imunológica/efeitos dos fármacos , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/metabolismo , Feminino , Galactosilceramidas/síntese química , Galactosilceramidas/química , Humanos , Soros Imunes/metabolismo , Melanoma/imunologia , Melanoma/patologia , Nanopartículas Metálicas/ultraestrutura , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Baço/patologia , Linfócitos T Citotóxicos/efeitos dos fármacos , Linfócitos T Citotóxicos/imunologia
16.
Cancer Res ; 81(7): 1788-1801, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33483371

RESUMO

CD1d-restricted invariant natural killer T cells (iNKT cells) mediate strong antitumor immunity when stimulated by glycolipid agonists. However, attempts to develop effective iNKT cell agonists for clinical applications have been thwarted by potential problems with dose-limiting toxicity and by activation-induced iNKT cell anergy, which limits the efficacy of repeated administration. To overcome these issues, we developed a unique bispecific T-cell engager (BiTE) based on covalent conjugates of soluble CD1d with photoreactive analogues of the glycolipid α-galactosylceramide. Here we characterize the in vivo activities of iNKT cell-specific BiTEs and assess their efficacy for cancer immunotherapy in mouse models using transplantable colorectal cancer or melanoma tumor lines engineered to express human Her2 as a tumor-associated antigen. Systemic administration of conjugated BiTEs stimulated multiple iNKT cell effector functions including cytokine release, secondary activation of NK cells, and induction of dendritic cell maturation and also initiated epitope spreading for tumor-specific CD8+ cytolytic T-cell responses. The antitumor effects of iNKT-cell activation with conjugated BiTEs were further enhanced by simultaneous checkpoint blockade with antibodies to CTLA-4, providing a potential approach for combination immunotherapy. Multiple injections of covalently stabilized iNKT cell-specific BiTEs activated iNKT cells without causing iNKT cell anergy or exhaustion, thus enabling repeated administration for effective and nontoxic cancer immunotherapy regimens. SIGNIFICANCE: Covalently stabilized conjugates that engage the antigen receptors of iNKT cells and target a tumor antigen activate potent antitumor immunity without induction of anergy or depletion of the responding iNKT cells.


Assuntos
Antígenos CD1d/farmacologia , Anergia Clonal/efeitos dos fármacos , Galactosilceramidas/farmacologia , Imunoterapia/métodos , Células T Matadoras Naturais/efeitos dos fármacos , Animais , Antígenos CD1d/química , Antígenos CD1d/imunologia , Anergia Clonal/imunologia , Feminino , Galactosilceramidas/química , Humanos , Imunoconjugados/farmacologia , Ativação Linfocitária/efeitos dos fármacos , Melanoma Experimental/imunologia , Melanoma Experimental/patologia , Melanoma Experimental/terapia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células T Matadoras Naturais/imunologia , Neoplasias Cutâneas/imunologia , Neoplasias Cutâneas/patologia , Neoplasias Cutâneas/terapia , Células Tumorais Cultivadas
17.
Mol Immunol ; 130: 1-6, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33340930

RESUMO

The capacity of α-galactosylceramide (α-GalCer) to act as an anti-cancer agent in mice through the specific stimulation of type I NKT (iNKT) cells has prompted extensive investigation to translate this finding to the clinic. However, low frequencies of iNKT cells in cancer patients and their hypo-responsiveness to repeated stimulation have been seen as barriers to its efficacy. Currently the most promising clinical application of α-GalCer, or its derivatives, is as stimuli for ex vivo expansion of iNKT cells for adoptive therapy, although some encouraging clinical results have recently been reported using α-GalCer pulsed onto large numbers of antigen presenting cells (APCs). In on-going preclinical studies, attempts to improve efficacy of injected iNKT cell agonists have focussed on optimising presentation in vivo, through encapsulation in particulate vectors, making structural changes that help binding to the presenting molecule CD1d, or injecting agonists covalently attached to recombinant CD1d. Variations on these same approaches are being used to enhance the APC-licencing function of iNKT cells in vivo to induce adaptive immune responses to associated tumour antigens. Looking ahead, a unique capacity of in vivo-activated iNKT cells to facilitate formation of resident memory CD8+ T cells is a new observation that could find a role in cancer therapy.


Assuntos
Galactosilceramidas/uso terapêutico , Imunoterapia/métodos , Ativação Linfocitária/efeitos dos fármacos , Células T Matadoras Naturais/efeitos dos fármacos , Neoplasias/terapia , Adjuvantes Imunológicos/uso terapêutico , Animais , Células Apresentadoras de Antígenos/imunologia , Linfócitos T CD8-Positivos/imunologia , Vacinas Anticâncer/uso terapêutico , Galactosilceramidas/farmacologia , Humanos , Ativação Linfocitária/fisiologia , Células T Matadoras Naturais/fisiologia , Células T Matadoras Naturais/transplante , Neoplasias/imunologia
18.
Immunohorizons ; 4(12): 797-808, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33323387

RESUMO

CD1d-restricted invariant NKT (iNKT) cells are innate-like T cells that respond to glycolipids, a class of Ags that are invisible to conventional T cells. iNKT cells develop in the thymus where they receive strong "agonist" TCR signals. During their ontogeny, iNKT cells differentiate into discrete iNKT1, iNKT2, and iNKT17 effector subsets akin to helper CD4 T cells. In this study, we found that transgenic (Tg) expression of the canonical Vα14-Jα18 TCRα-chain at the double-positive thymocyte stage led to premature iNKT cell development and a cell-intrinsic bias toward iNKT2 cells, due to increased TCR signaling upon selection. Consistent with the strong iNKT2 bias, innate memory CD8+ T cells were found in greater numbers in Vα14 Tg mice, whereas the prevalence of mucosa-associated invariant T cells was reduced. iNKT cells from Vα14 Tg mice were hyporesponsive to stimulation by their cognate Ag α-galactosylceramide. Finally, Vα14 Tg mice displayed increased B16F10 melanoma tumor growth compared with wild-type mice. This study reveals some of the limitations of Vα14 Tg mice and warrants the cautious interpretation of past and future findings using this mouse model.


Assuntos
Diferenciação Celular/imunologia , Células T Matadoras Naturais/imunologia , Células T Matadoras Naturais/metabolismo , Linfócitos T Auxiliares-Indutores/imunologia , Animais , Antígenos CD1d/genética , Antígenos CD1d/metabolismo , Linfócitos T CD8-Positivos/imunologia , Galactosilceramidas/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Modelos Animais , Células T Matadoras Naturais/citologia , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/metabolismo , Timo/citologia , Timo/imunologia , Timo/metabolismo
19.
ACS Chem Biol ; 15(12): 3176-3186, 2020 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-33296161

RESUMO

Activation of invariant natural killer T (iNKT) cells by α-galactosylceramides (α-GalCers) stimulates strong immune responses and potent anti-tumor immunity. Numerous modifications of the glycolipid structure have been assessed to derive activating ligands for these T cells with altered and potentially advantageous properties in the induction of immune responses. Here, we synthesized variants of the prototypical α-GalCer, KRN7000, with amide-linked phenyl alkane substitutions on the C4″-position of the galactose ring. We show that these variants have weak iNKT cell stimulating activity in mouse models but substantially greater activity for human iNKT cells. The most active of the C4″-amides in our study showed strong anti-tumor effects in a partially humanized mouse model for iNKT cell responses. In silico analysis suggested that the tether length and degree of flexibility of the amide substituent affected the recognition by iNKT cell antigen receptors of the C4″-amide substituted glycolipids in complex with their antigen presenting molecule CD1d. Our findings establish the use of stable C4″-amide linked additions to the sugar moiety for further exploration of the immunological effects of structural modifications of iNKT cell activating glycolipids and highlight the critical need for more accurate animal models to assess these compounds for immunotherapeutic potential in humans.


Assuntos
Amidas/química , Galactosilceramidas/química , Células Matadoras Naturais/efeitos dos fármacos , Neoplasias/imunologia , Açúcares/química , Animais , Galactosilceramidas/farmacologia , Glicolipídeos/farmacologia , Humanos , Células Matadoras Naturais/imunologia , Camundongos , Modelos Animais
20.
PLoS One ; 15(10): e0239537, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33006978

RESUMO

BACKGROUND: CLN3 disease is caused by mutations in the CLN3 gene. The purpose of this study is to discern global expression patterns reflecting therapeutic targets in CLN3 disease. METHODS: Differential gene expression in vehicle-exposed mouse brain was determined after intraperitoneal vehicle/Galactosylceramide (GalCer) injections for 40 weeks with GeneChip Mouse Genome 430 2.0 arrays. RESULTS: Analysis identified 66 genes in male and 30 in female brains differentially expressed in GalCer-treated versus vehicle-exposed Cln3Δex7/8 mice. Gene ontology revealed aberrations of biological function including developmental, cellular, and behavioral processes. GalCer treatment altered pathways of long-term potentiation/depression, estrogen signaling, synaptic vesicle cycle, ErbB signaling, and prion diseases in males, but prolactin signaling, selenium compound metabolism and steroid biosynthesis in females. Gene-gene network analysis highlighted networks functionally pertinent to GalCer treatment encompassing motor dysfunction, neurodegeneration, memory disorder, inflammation and astrogliosis in males, and, cataracts, inflammation, astrogliosis, and anxiety in females. CONCLUSIONS: This study sheds light on global expression patterns following GalCer treatment of Cln3Δex7/8 mice. Understanding molecular effects of GalCer on mouse brain gene expression, paves the way for personalized strategies for treating this debilitating disease in humans.


Assuntos
Galactosilceramidas/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Glicoproteínas de Membrana/genética , Chaperonas Moleculares/genética , Caracteres Sexuais , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Feminino , Ontologia Genética , Masculino , Camundongos , Análise de Sequência com Séries de Oligonucleotídeos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA